Danish Small Satellite Programme

DTU Satellite Systems and Design Course Cubesat Thermal Design

Flemming Hansen MScEE, PhD Technology Manager Danish Small Satellite Programme Danish Space Research Institute

Phone: 3532 5721 E-mail: fh@dsri.dk

Downloads available from: http://www.dsri.dk/roemer/pub/cubesat

Danish Small Satellite Programme

- A satellite alone in the universe is a small world where conditions for "life" shall be maintained in the sense that electronics, batteries, solar cells etc. must not "die" before the mission is fulfilled.
- This requires that the temperature be within certain limits.
- The laws of nature will inevitably take care that an equilibrium is attained between the incident radiation from the sun, albedo from the Earth or some other body neraby and the infrared radiation to cold space.
- This is exactly the same as happens for the Earth on its position in the solar system
- Fortunately for us, the equilibrium here at Earth allows intelligent life.
- The discipline of obtaining a satisfactory thermal balance is called thermal design

Danish Small Satellite Programme

Thermal Transport Mechanisms

There are three mechanisms for transporting heat from one point to another

- 1. Conduction Metals are good conductors Plastics are poor conductors = good insulators
- 2. Radiation

Black surfaces are good absorbers of radiation and good radiators (emitters) of heat to space Polished metal surfaces are poor radiators and absorbers We shall see later that the heat power radiated per unit surface is proportional to T⁴, where T is the absolute temperature of the surface

 Convection (Heat flow in a fluid or gas).
 This is not relevant in space except in liquid propulsion systems and special devices like heat pipes

Danish Small Satellite Programme

Thermal Environment - 1

Danish Small Satellite Programme

Thermal Environment - 2

Visible light: ≈0.4 µm - ≈0.76 µm (400 - 760 nm)

Danish Small Satellite Programme

Thermal Characteristics of Materials - 1

We need to consider four effects:

- Some of the power is reflected back into space (ρ)
- Some of the power is absorbed and heat the surface (α)
- Some of the power is transmitted into the body (τ)
- When the surface is warmer than absolute zero it emits long wavelength infrared radiation with an efficiency ε (emissivity) compared to a black body (0 ≤ ε ≤ 1)

In addition we need to consider the cosine law:

$$\mathbf{Q}_{a} = \mathbf{S}_{0} \cdot \alpha \cdot \mathbf{A} \cdot \mathbf{cos}(\theta)$$
, where:

P_a is the absorbed power

S₀ is the solar constant: 1367 W/m²

 α is the absorbtivity

A is the area of the surface

 $\boldsymbol{\theta}$ is the angle of incidence, i.e. the angle between the surface normal and the direction to the sun

Danish Small Satellite Programme

Thermal Characteristics of Materials - 2

How are the thermal characteristics in long wave IR compared to visible light ???
- or - how would surfaces look like if out eyes were tuned to the 10 - 20 μm range ???

First we should note that a surface emits long wave IR with an efficiency ϵ (emissivity) compared to a black body also absorbs radiation in the same wavelength range with an efficiency ϵ

This is important when we consider radiative heat exchange within the spacecraft body or within e.g. electronics compartnments.

Investigating the graph at right we realize that white = black, i.e. a paint that looks white to our eyes is actually black (almost) with long wavelength IR eyes.

Danish Small Satellite Programme

Thermal Characteristics of Materials - 3

The combined absorbtivity/emissivity properties of a surface determines its characteristics:

- If the α/ε ratio is high, the surface is "warm" as it is a good absorber but a poor radiator e.g. polished aluminium or gold
- If the α/ε ratio is low, the surface is "cold" as it is a poor absorber but a good radiator e.g. silvered or aluminized teflon

No.	Material	Measure- ment Temp. (K)	Surface Condition	Solar Absorp- tivity, α	Infra- red Emis- sivity E	Absorp- tivity/ Emis- sivity Ratio	Equili- brium Temp* (°C)
1	Aluminum (6061-T6)	294	As Received	0.379	0.0346	10.95	450
2	Aluminum (6061-T6)	422	As Received	0.379	0.0393	9.64	428
3	Aluminum (6061-T6)	294	Polished	0.2	0.031	6.45	361
4	Aluminum (6061-T6)	422	Polished	0.2	0.034	5.88	346
5	Gold	294	As Rolled	0.299	0.023	13.00	482
6	Steel (AM 350)	294	As Received	0.567	0.267	2.12	207
7	Steel (AM 350)	422	As Received	0.567	0.317	1.79	187
8	Steel (AM 350)	611	As Received	0.567	0.353	1.61	175
9	Steel (AM 350)	811	As Received	0.567	0.375	1.51	168
10	Steel (AM 350)	294	Polished	0.357	0.095	3.76	281
11	Steel (AM 350)	422	Polished	0.357	0.111	3.22	259
12	Steel (AM 350)	611	Polished	0.357	0.135	2.64	234
13	Steel (AM 350)	811	Polished	0.357	0.155	2.30	217
14	Titanium (6AL-4V)	294	As Received	0.766	0.472	1.62	176
15	Titanium (6AL-4V)	422	As Received	0.766	0.513	1.49	166
16	Titanium (6AL-4V)	294	Polished	0.448	0.129	3.47	270
17	Titanium (6AL-4V)	422	Polished	0.448	0.148	3.03	251
18	White Enamel	294	AI. Substrate	0.252	0.853	0.30	20
19	White Epoxy	294	Al. Substrate	0.248	0.924	0.27	13
20	White Epoxy	422	Al. Substrate	0.248	0.888	0.28	16
21	Black Paint	294	Al. Substrate	0.975	0.874	1.12	136
22	Silvered Teflon	295		0.08	0.66	0.12	-39
23	Aluminized Teflon	295		0.163	0.8	0.20	-6
24	OSR (Quartz Over Silver)	295		0.077	0.79	0.10	-51
25	Solar Cell-Fused Silica Cover			0.805	0.825	0.98	122

Danish Small Satellite Programme

Thermal Characteristics of Materials - 4

Material	Absorbtivity α	Emissivity ϵ	α/ϵ
Aluminium (6061-T6 alloy) as supplied	0.379	0.0346	10.95
Aluminium (6061-T6 alloy) polished	0.2	0.031	6.45
Aluminium with Alodine 1200S			
Chromate Conversion Coating	0.08	0.15	0.53
Gold	0.299	0.023	13.00
White epoxy paint	0.248	0.924	0.27
Black paint	0.975	0.874	1.12
Silver coated Teflon	0.08	0.66	0.12
Aluminized Teflon (front surface)	0.163	0.80	0.20
Aluminized 25 µm Kapton (back surface)	0.36	0.61	0.59
Multi-Layer Insulation with aluminized			
25 µm Kapton cover sheet, large areas			
without seams	0.36	e* = 0.002	180
Silicon solar cells (with cover glass)	0.75	0.83	0.90
Gallium-Arsenide solar cells			
(with cover glass)	0.75	0.83	0.90

Danish Small Satellite Programme

Radiation into Cold Space

The infrared radiation in Watts into cold space from a surface (radiator) having the area A_r , the absolute temperature T_r and the emissivity ε is given by:

 $\mathbf{Q}_{e} = \varepsilon \cdot \sigma \cdot \mathbf{A}_{r} \cdot (\mathbf{T}_{r}^{4} - \mathbf{T}_{0}^{4})$

where $\sigma = 5.6696 \cdot 10^{-8}$ W·m⁻²·K⁻⁴ is the Stephan-Boltzmann constant

and T_0 is the temperature of the cosmic background radiation, which closely matches the spectral properties of black-body radiation from a 2.7 K warm body. As the temperature is to the fourth power, a very good approximation is:

$$\mathbf{Q}_{e} = \varepsilon \cdot \sigma \cdot \mathbf{A}_{r} \cdot \mathbf{T}_{r}^{4}$$

Danish Small Satellite Programme

Temperature Equilibrium

An equilibrium will always be reached some time after the solar irradiation has begun. Assuming normal incidence ($\varphi = 0$) and a perfectly insulated back side, temperature will adjust until $Q_e = Q_a$. This yields:

 $\varepsilon \cdot \sigma \cdot \mathbf{A}_{r} \cdot \mathbf{T}_{r}^{4} = \alpha \cdot \mathbf{S}_{0} \cdot \mathbf{A}_{r}$

and

This is the background for the equilibrium temperatues shown in the materials properties table and the reason for the importance of the α/ϵ ratio

Danish Small Satellite Programme

Problem #1 - Temperature Equilibrium

Imagine our Cubesat made from Alodine 1200S coated aluminium: $\alpha = 0.08$, $\epsilon = 0.15$

8 GaAs solar cells 2 x 4 cm with cover glas on each of the 6 faces of the cube:

 α = 0.75, ϵ = 0.83, η = 0.25 (solar energy to electricity conversion efficiency)

The Cubesat is alone in the solar system far from the Earth.

The Cubesat is illuminated by the Sun at 1 AU distance with a flux of: $S_0 = 1367 \text{ W/m}^2$

The direction to the sun is parallel to the line between opposite corners of the cube.

- 1. Calculate the incidence angle of sunlight on the three sunlit faces
- 2. Calculate the electrical output from the solar cells
- 3. Calculate the equilibrium temperature of the Cubesat

Temperature equilibrium

Absorbed power: $Q_a = S_0 \cdot \alpha \cdot A \cdot \cos(\theta)$

Emitted power: $Q_e = \varepsilon \cdot \sigma \cdot A_r \cdot T_r^4$ (approx.)

Equilibrium condition: $Q_a = Q_a$

Stephan-Boltzmann constant: $\sigma = 5.6696 \cdot 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$

Danish Small Satellite Programme

Problem # 1 - Solution

- 1. The angle between a cube face and the farthest corner is calculated by: $\theta = \arctan(1/\sqrt{2}) = 35.26^{\circ}$. The incidence angle is then: $\theta = 90^{\circ} - 35.26^{\circ} = 54.74^{\circ}$
- 2. Three faces are illuminated at the same incidence angle: $\theta = 54.74^{\circ}$ There are 64 cm² of solar cell area on each of three faces: A = 192 cm² = 0.0192 m² Output power: P_o = S₀·A·η·cos(θ) = 1367·0.0192·0.25·0.5774 = 3.79 W
- 3. The weighted average absorbtivity of a surface is: $\alpha' = (36 \cdot 0.08 + 64 \cdot 0.75)/100 = 0.5088$ The weighted average emissivity of a surface is: $\epsilon' = (36 \cdot 0.15 + 64 \cdot 0.83)/100 = 0.5312$

The absorbed power on three sunlit faces is:

 $Q_a = S_0 \cdot \alpha' \cdot A \cdot \cos(\theta) = 1367 \cdot 0.5088 \cdot 0.03 \cdot 0.5774 = 12.048 W$

The radiated power comes from all six faces of the cube: $Q_{a} = \epsilon' \cdot \sigma \cdot 2A \cdot T_{r}^{4} = Q_{a}$, for equilibrium

Solving for T yields: $T = 285.8 \text{ K} = 12.6 \degree \text{C}$

Danish Small Satellite Programme

Heat Insulation - 1

Often heat insulation is needed e.g. to keep an instrument sufficiently warm or the prevent heat from body-mounted solar panels from propagating into the spacecraft or for other reasons.

The material of choice is MLI (Multilayer Insulation)

DSRI

Danish Small Satellite Programme

Heat Insulation - 2

MLI is most easily characterized by an effective emissivity: ϵ_{eff}

 ϵ_{eff} vs. Number of Layers

ϵ_{eff} vs. Ambient Pressure

Danish Small Satellite Programme

Heat Insulation - 3

... but the efficiency of MLI is strongly dependent on the density of discontinuities created when sewing, welding, glueing or otherwize preparing the insulating blankets

Good insulation is easier to obtain on a large cryogenic fuel tank than a small scientific instrument with a complex shape

Danish Small Satellite Programme

Heat Pipes

Heat Pipes are simple and very efficient devices for transporting heat

Heat Pipes are passive and may be used both at cryogenic temperature, room temperature and elevated temperature depending on the working fluid selected

Danish Small Satellite Programme

b)

Example of Passive Cooling System for Cryo-Sensor

Kapton/MLI **Radiator Heat** MLI (60 Layers) /Transport Pipe Cold Stage Heat Pipe (2) Intermediate Stage 2111 Sun Shield C) SENSOR/RADITOR/SPACECRAFT INTEGRATION Spacer **Radiator Heat Pipe** Support Strut **Transport Heat Pipes** Cold Stage Sun Shield Methane Heat Pipes **g**° Intermediate Stage The cold stage rejects 5 W heat at 70 K Scan Gimbal from a $\approx 1 \text{ m}^2$ surface **Focal Plane** Solar Panel. Spacecraft Srructure **Dithering Mirror**

RADIATOR CROSS SECTION

Danish Small Satellite Programme

• DSRI

Structure

- The structure shall be strong and stiff in order to withstand the vibrations, quasistatic accelarations, shock and acoustic noise during launch
- The structure shall be thermally stable in order to withstand the temperature variations in orbit while maintaining instruments aligned
- The structure shall provide a common electrical grounding point
- The structure shall be lightweight
- The structure shall be designed for easy access to equipment and and for safe and easy handling during integration and transportation

Ariane 4 quasi-static acceleration profile during launch

Danish Small Satellite Programme

Types of Structure - 1

Trusses and Frames

A *truss* is a structure that can withstand loads applied to its joints with its members loaded only axially (no shear and no moment). A stable truss is recognizable—the arrangement of its members forms triangles (see Sec. 15.6). Polygons of any other shape, such as a rectangle, usually imply instability, in which case we must make the structure a frame. A *frame* can carry shear and bending through its joints and members. In most cases, trusses are more efficient than frames. A statically determinate truss has no more members than are necessary for stability and to introduce and react loads. Note that if the ends of truss members are not pinned through the use of bearings or other devices, the members will carry shears and moments, which can greatly increase member stresses.

Forms of Construction:	 Extruded tubes (square or round) or open shapes Separately machined members of open section (I, Z, channel, angle) Truss sides integrally machined from plate-stock material Members made of sheet metal formed into structural shapes Laminated composite tubes with metallic end fittings
Typical Materials:	Aluminum, magnesium, and titanium alloys; graphite/epoxy composite
Attachment Methods:	 Mechanical fastening (bolts or rivets), welding, or bonding, depending on the material (see Sec. 15.5)
Packaging and Access:	 Spacecraft components can be mounted internally or externally Structure's interior is accessible for installing and wiring components
Other Design Considerations:	 Can be difficult to transfer loads from a truss to a cylindrical structure, such as a launch vehicle, without locally overloading the cylinder Trusses are weight-efficient for structures of square, rectangular, or triangular cross section; they become less efficient as the cross section becomes more round (e.g., hexagonal) Machining a full side of the truss from a single piece of metal is usually more economical than fabricating and assembling individual members; the cost of material and machining is typically offset by savings in labor

Skin-Frame Structures

Closed structures require blind fasteners

FH 2001-08-29

Considerations:

Danish Small Satellite Programme

Types of Structure - 2 Other Cylinder Structures Monocoque Cylinder A monocoque cylinder is an axi-symmetric shell without stiffeners or ring frames. Its strength is limited by its buckling stress. The shell buckling equations in Chap. 8 apply for unpressurized isotropic cylinders (identical properties in all directions). To be effective as a structure, a monocoque cylinder must have loads introduced uniformly over its cross section, with stress, f, following the relationship, f = P/A + My/I, where P is axial force, A is area, M is moment, v is distance from neutral axis, and I is area moment of inertia (see Chap. 6). Concentrated loads can cause local failure. To achieve a uniform load distribution, the mating structure must be either another monocoque cylinder or a stiff transition adapter. • Sheet metal or isogrid (see Fig. 15.4), with curvature formed by rolling Forms of Sandwich construction (Fig. 15.4), with segments fabricated with curvature Construction: Typically two or three segments used to form a cylinder **Typical Materials:** Aluminum and magnesium allovs; graphite/epoxy composite is often used for sandwich face sheets Attachment Methods: • Mechanical fasteners (bolts or rivets) or welds for attaching segments Difficult to mount components without overloading the shell. Decks often Packaging and must be supported by ring frames. For wall mounting, we typically must Access: provide ring frames and intercostals, which are short axial members that go between and attach to two frames. Removable access panels may be required A solid-skin cylinder made of sheet or plate metal is the simplest and least Other Design expensive structure, but solid-skin cylinders are normally suitable only for Considerations: stiffness-critical designs because of low buckling strength • Use of sandwich construction results in a light structure; isogrid shells can also be made at relatively low weight

Each of these options for a cylindrical structure includes members that help carry loads and stabilize the skin.

In a *skin-stringer structure*, the skin is typically designed to buckle at relatively low loads and transfer shear and torsion by diagonal tension (see Fig. 15.3). The stringers carry most of the axial load and bending moment, and they and the ring frames must react the radial component of diagonal tension loads. The skin and members must be attached with closely spaced rivets or threaded fasteners in order to act together as a structure.

A stiffened-skin cylinder has a thin skin and light-weight, closely spaced stiffeners. Stiffeners are axial members intended to increase the buckling stress of the skin (as opposed to stringers, which carry most of the axial load). Intermediate ring frames are sometimes used to stabilize the stiffeners and thus reduce their size. The stiffeners and skin can be integrally machined from flat plate, which is then formed to have curvature between stiffeners.

A *semi-monocoque cylinder* has intermediate ring frames to increase the buckling stress of the skin, but no axial stiffeners or stringers.

Of these, skin-stringer structures are most common. They have been used often for launch vehicles, booster adapters, and airplane fuselages. But these structures are not as economical as they used to be. The rising cost of labor during assembly usually makes skin-stringer structures less desirable than monocoque cylinders made of isogrid or sandwich construction (see Fig. 15.4).

Forms of Construction:	 Stringers and axial stiffeners extruded, machined, or formed from sheet metal; skin made of sheet metal Ring frames machined from ring forgings Skin and stiffeners integrally machined from a single flat plate, then formed.
Typical Materials:	Aluminum alloys
Attachment Methods:	Rivets or threaded fasteners
Packaging and Access:	 Internal access can be difficult; may need removable panels or framed cutouts
Other Design Considerations:	 The hard points provided by stringers make it easier to introduce loads from other types of structures than it is for monocoque cylinders

Skin-stringer

Stiffened-skin

Semi-monocoque

Danish Small Satellite Programme

RØMER - Trusses and Frames Structure with Shear Panels

Danish Small Satellite Programme

Honeycomb and Isogrid Panels

Danish Space Research Institute Danish Small Satellite Programme

Cubesat Stackable Frame Structure

Specifications

Feature	Data
Configuration	Vertical-stacking, independent compartments with standard connectors
Material	7071-T3 Aluminum
Dimensions	10cm x 10cm x 1.783 cm
Connectors	DB-9. DB-15, DB-25, DB-36, or NTSC

Danish Small Satellite Programme

DNEPR Mission Profile for Launching Clusters of Small Spacecraft

Danish Small Satellite Programme

DNEPR Quasi-Static and Dynamic Loads

Load Source	Spacecraft/Launch Vehicle Interface			
	Axial g-load	Lateral g-load		
Launch				
Movement inside the launch				
canister	2.4 ± 0.2	0.2 ± 0.3		
After exit from the launch				
canister	0.0 ± 0.5	0.8 ± 0.3		
First stage flight				
Maximum dynamic head	$nx = 3.1 \pm 0.3$ at gmax	0.35 ± 0.2		
Maximum axial g-load	nx max = 7.0 ± 0.5	0.1 ± 0.4		
Second stage flight				
Maximum axial g-load	nx max = 7.7 ± 0.5	0.1		
Third stage flight				
Maximum dynamic head	nx = -0.30.5			

Danish Small Satellite Programme

DNEPR Random Vibration Spectral Density

Actual vibration level experienced by Cubesat: 6.28 g rms Cubesat qualification vibration level, 125% of actual: 7.85 g rms The RMS vibration level is obtained by integrating the vibration spectal density

vibration spectal density over the specified frequency band and taking the square root:

A1rms :=
$$\int_{20}^{2000} \operatorname{vsd}(f, 1) \, df$$

Duration: 90 sec.

Danish Small Satellite Programme

Transfer Function for Unit Response to Sine Vibration

Danish Small Satellite Programme

DNEPR Acoustic Loads under Fairing

Octave Frequency Band	
Mean Geometric Frequency	Sound Pressure Level
Hz	dB
31.5	125
63	132
125	135
250	134
500	132
1000	129
2000	126
4000	121
8000	115
Integral level of sound pressure	
dB	140
Duration	
sec	35

Danish Small Satellite Programme

DNEPR Shock Spectrum

