

Danish Small Satellite Programme

DTU Satellite Systems and Design Course Orbital Mechanics

Flemming Hansen MScEE, PhD Technology Manager Danish Small Satellite Programme Danish Space Research Institute

Phone: 3532 5721 E-mail: fh@dsri.dk

Danish Small Satellite Programme

Planetary and Satellite Orbits

- **•** Johannes Kepler (1571 1630)
 - Discovered by the precision mesurements of Tycho Brahe that the Moon and the planets moves around in elliptical orbits
 - Harmonia Mundi 1609, Kepler's 1st og 2nd law of planetary motion:
 - 1st Law: The orbit of a planet ia an ellipse with the sun in one focal point.
 - 2nd Law: A line connecting the sun and a planet sweeps equal areas in equal time intervals.
 - 1619 came Keplers 3rd law:
 - 3rd Law: The square of the planet's orbit period is proportional to the mean distance to the sun to the third power.

Danish Small Satellite Programme

• DSRI

Newton's Laws

Isaac Newton (1642 - 1727)

- Philosophiae Naturalis Principia Mathematica 1687
- 1st Law: The law of inertia
- 2nd Law: Force = mass x acceleration
- 3rd Law: Action og reaction
- The law of gravity:

$$F = \frac{GMm}{r^2}$$

- F Gravitational force between two bodies
- G The universal gravitational constant: G = 6.670 10⁻¹¹ Nm²kg⁻²
- M Mass af one body, e.g. the Earth or the Sun
- m Mass af the other body, e.g. the satellite
- r Separation between the bodies

G is difficult to determine precisely enough for precision orbit calculations.

 GM_{Earth} can be determined to great precision: $GM_{Earth} = \mu = 3.986004418 \cdot 10^{14} \text{ m}^3/\text{s}^2$

50.2786" westerly drift of the Vernal Equinox per year

Danish Small Satellite Programme

Kepler Elements, Orbital Elements (Earth Orbits)

Five orbital elements are neded to determine the orbit geometry:

- a Semi-Major Axis Determines the size of the orbit and the period of revolution
- e Eccentricity Determines how elongated the ellipse is
- i Inclination

Angle between the equator and orbital planes

 $0^\circ \leq i \leq 90^\circ$: The satellite has an easterly velocity component – prograde orbit

 $90^{\circ} \le i \le 180^{\circ}$: The satellite has a westerly velocity component – retrograde orbit

Ω Right Ascension of Ascending Node - RAAN

Angle from Vernal Equinox to the point where the orbit intersects the equatorial plane passing from South to North (the Ascending Node).

ω Argument of Periapsis / Perigee

Angle Between the line of nodes (the line between the ascending and descending nodes) and periapsis / perigee

Danish Small Satellite Programme

Two more elements are needed to calculate the position of the satellite at any time:

- **T**₀ **Epoch Time** Reference time for orbital elements and start of orbit propagation
- v_0 True anomaly at Epoch Angle from periapsis / perigee to the satellite position at T_0

Normally the parameter "Mean Motion" is used instead of the semi-major axis in orbital calculations:

Mean Motion:
$$n := \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mu}{a^3}}$$
 Orbit period: $Tp := 2 \cdot \pi \cdot \sqrt{\left(\frac{a^3}{\mu}\right)}$
Normally the parameter Mean Anomaly instead true anomaly in
an orbital parameter set:
 $M - M_0 = n (t - T_0) = E - e \sin E$ (Kepler's equation)
where E is the Eccentric Anomaly

Danish Small Satellite Programme

Kepler's problem

Given: $\underline{\mathbf{r}}_0$, $\underline{\mathbf{v}}_0$ at time \mathbf{T}_0

Find: **r**, **v** at time t

Danish Small Satellite Programme

Perturbations

The fact that the Earth is not a sphere but an ellipsoid causes the orbit of a satellite to be perturbed

Geopotential function:

$$\Phi(r,L) = (\mu/r) \bullet [1 - \sum J_n(R_E/r)^n P_n(\sin L)]$$

where:

L is latitude

 R_E is the Earth radius at Equator P_n is the Legendre polynomials

J_n are dimensionless coefficients:

J₂ = 0.00108263 J₃ = -0.00000254

J₄ = -0.00000161

•••

Orbit	Effect of J ₂ (Eqs. 6-19, 6-20) (deg/day)	Effect of Moon (Eqs. 6-14, 6-16) (deg/day)	Effect of Sun (Eqs. 6-15, 6-17) (deg/day)
Shuttle	<i>a</i> = 6700 km, <i>e</i> = 0.0, <i>i</i> = 28 deg		
$\Delta \Omega$	-7.35	-0.000 19	-0.000 08
Δω	12.05	0.002 42	0.001 10
GPS	<i>a</i> = 26,600 km, <i>e</i> = 0.0, <i>i</i> = 60.0 deg		
$\Delta \Omega$	-0.033	-0.000 85	-0.000 38
$\Delta \omega$	0.008	0.000 21	0.000 10
Molniya	<i>a</i> = 26,600 km, <i>e</i> = 0.75, <i>i</i> = 63.4 deg		
$\Delta \Omega$	-0.30	-0.000 76	-0.000 34
Δω	0.00	0.000 00	0.000 00
Geosynchronous	<i>a</i> = 42,160 km, <i>e</i> = 0, <i>i</i> = 0 deg		
$\Delta \Omega$	-0.013	-0.003 38	-0.001 54
$\Delta \omega$	0.025	0.006 76	0.003 07
			1

. .

 $\Delta \Omega$ is the drift of the ascending node $\Delta \omega$ is the drift of periapsis / perigee

The Sun moves easterly by 0.9856° per day. An orbit exhibiting the same drift of the ascending node is said to be sun-synchronous (Helio-synchronous). This requires i > 90° i.e. a retrograde orbit. The satellite crosses the Equator at the same local solar time every orbit.

FH 2001-09-16

Orbital_Mechanics.ppt

FH 2001-09-16

Orbital Mechanics.ppt

Danish Small Satellite Programme

Molniya Orbit

Drift of periapsis / perigee is zero at i = 63.435°.

This type of orbit with $e \approx 0.75$, ≈ 12 hour period and apogee on the Northern hemisphese is denoted Molniya orbit and is used by Russian communication satellites

The advantage is that the apogee stays at the Northern hemisphere and is high in the sky for around 8 hours

A geostationary satellite far North (or South) is near the horizon and is easily blocked by mountains or buildings.

Danish Small Satellite Programme

Other Orbits

```
Geostationary Orbit (GEO or GSO).
Circular orbit with inclination = 0^{\circ}, semi-major axis = 42164.172 km, h = 35768 km
Period = 23 h 56 m 4.0954 s
```

Geostationary Transfer Orbit (GTO) Elliptical Orbit with inclination ≈ 7° (from Kourou), ≈ 28.5° (from Cape Canaveral) Perigee ≈ 500 – 600 km, Apogee = 35768 km)

Low Earth Orbit (LEO) Orbits in the altitude range 250 – 1500 km

Medium Earth Orbit (MEO) Orbits in the altitude range 10000 – 25000 km 🔵 DSRI

Slide # 13

Software for Orbit Calculations

Danish Space Research Institute

Danish Small Satellite Programme

NOVA for Windows 32

Shareware at USD 59.95

Download from http://www.nlsa.com

Free demo which may be registered for legal use.

Danish Small Satellite Programme

NOVA for Windows Orbital Elements

Satellite Editor	mt-ci il		astellites: Le	at undets and 7	7.06.06	×
Keplenan eleme	ints	290 available	satenites. La	St update on, 2	Tolodooir	
Satellite name	ØRSTED	Prognoz M2		0E 407 TM 27	TOMP EE	
Catalog number	25635	Progress M-	39 So	ektr	TOPEX	
Enoch time	99119 52419602	RADARSAT	SP	OT 1	TRACE	
Epochanie	33113.32413002	RADCAL	SP	ОТ 2	TUBSAT-	A
Element set	234	RESURS 1-	3 SP	от з	TUBSAT-	в
Inclination	96.48290000	ROSAT	SP	ОТ 4	UARS	
		RS-10/11	Sta	rlette	UFO F2	
RA Asc. Node	58.80410000	RS-12/13	STI	ELLA	UO-11	
Eccentricity	0.01543630	RS-15	STI	EP-M4	UO-14	
Arg of periges	48 80510000		STI	RV-1A	UO-22	4
Alg. of perigee		CAMPEY	= 311 TD	TV-10	UPWISAT	36
Mean anomaly	180.88270000	SARA		R0 1	VTE	
Mean motion	14.40923524	SAX	TD	RS 4	YES	
	0.0000000	SeaSat 1	TDI	RS 5	ZEYA	
Decay rate	0.00000000	SeaStar	TDI	RS 6	ZHONGW	/EI 1
Epoch orbit#	12345	SICH-1	TD	RS 7	ØRSTED	
ALat 0 👙	ALon 0	•				Þ
√α Derived Φ	Add m Sched	🔉 <u>U</u> pdate	🖹 C <u>l</u> ean	💉 <u>N</u> ew	③ <u>T</u> imed	👘 <u>D</u> elete
Groups Ker	plerian elements /	🗸 <u>о</u> к	X <u>C</u> ancel	? <u>H</u> elp	Who's Up?	Config. e <u>x</u> tra

Danish Small Satellite Programme

Orbital Elements in NASA TLE (Two-Line Elements) format

	<pre>ØRSTED = Name of spacecraft (Max. 11 characters)</pre>	
Col. No.	:	:67 2345678901234567890
Legend	L AAAAAU YYNNNPPP XXDDD.FFFFFFFF CCCCCCCC UUUUUU	U VVVVVV E SSSSZ
TLE 1	1 25635U 99008B 99132.50239417 +.00000000 +00000+	0 +00000+0 1 12344
Col. No.		7 2345678901234567890
Legend	L AAAAA III.IIII RRR.RRRR EEEEEEE PPP.PPPP NNN.NNNN	MM.MMMMMMKKKKKZ
TLE 2	2 25635 96.4836 68.6614 0153506 8.1032 183.1749	14.40955463 11246
TLE Data I	Line 1	TLE Data Line 2
L: Line Nu	umber	L: Line Number
A: Catalog	y Number	A: Catalog Number
U: Unclass	sified (C: Classified)	I: Inclination
Y: Last Tw	wo Digits of Daunch Year	R: Right Ascension of Ascending Node
N: Launch	Number of the Year	E: Eccentricity, assuming implicitly
P: Piece c	of Launch	a decimal point at left
X: Last tw	vo digits of Epoch Year	P: Argument of Perigee
D: Day num	nber in Epoch Year	N: Mean Anomaly
F: Fractic	on of day in Epoch Time	M: Mean Motion
C: Decay R	Rate (First Time Derivative of the Mean Motion divided by 2)	K: Orbit Number
U: Second	Time Derivative of Mean Motion divided by 6. (Blank if N/A)	Z: Checksum
V: BSTAR d	lrag term if GP4 general perturbation theory was used.	
Otherwi	ise, radiation pressure coefficient.	
E: Ephemer	ris Type (=1 normally)	
S: Element	z Set Number	
Z: Checksu	m	

Danish Small Satellite Programme

Use of Orbit Calculations for Mission Planning

Eksempel: Rømer mission in Molniya orbit

Separation satellite – ground station versus time

Elevation at ground station versus time

Danish Small Satellite Programme

Downlink bit-rate versus time

Satellitten in eclipse (in Earth's shadow). Max. approx. 1 hour at winter solstice

Danish Small Satellite Programme

Use of Orbit Calculations for Mission Planning

Calculation of delta-V needed to change apogee for Geostationary Transfer Orbit (GTO) to reach the Moon

ha1 := 36786 km	ra1 := ha1 + Rem
hp1 := 500 km	rp1 := hp1 + Rem
i1 := 7·deg	
$a1 := \frac{ra1 + rp1}{2}$	a1 = 25014.001•km
$e1 := \frac{ra1}{a1} - 1$	e1 = 0.725314
$Tp1 := 2 \cdot \pi \cdot \sqrt{\frac{a1^3}{\mu}}$	Tp1 = 10.937•hr
$n1 := \frac{2 \cdot \pi}{Tp1}$	$n1 = 2.194461949 \frac{rev}{day}$
$E1 := \frac{-\mu}{2 \cdot a1}$	$E1 = -7.968 10^6 \circ \frac{J}{kg}$
va1 := Velo(E1, ra1)	$va1 = 1592.802 m \cdot s^{-1}$
vp1:= Velo(E1, rp1)	$vp1 = 10004.444 \text{m} \cdot \text{s}^{-1}$
	ha1 := 36786 km hp1 := 500 km i1 := 7 · deg a1 := $\frac{ra1 + rp1}{2}$ e1 := $\frac{ra1}{a1} - 1$ Tp1 := $2 \cdot \pi \cdot \sqrt{\frac{a1^3}{\mu}}$ n1 := $\frac{2 \cdot \pi}{Tp1}$ E1 := $\frac{-\mu}{2 \cdot a1}$ va1 := Velo(E1, ra1) vp1 := Velo(E1, rp1)

Danish Small Satellite Programme

Orbit Calculations, Continued

Final Orbit Parameters (Raised Apogee)

Apogee Height & Radius	ha2 := 384400 km	ra2 := ha2 + Rem
Perigee Height & Radius	hp2 := hp1	rp2 := hp2 + Rem
Inclination	i2 := i1	
Semi-Major Axis	$a2 := \frac{ra2 + rp2}{2}$	a2 = 198821.001km
Eccentricity	$e2 := \frac{ra2}{a2} - 1$	e2 = 0.965441
Orbit Period	Tp2 := $2 \cdot \pi \cdot \sqrt{\frac{a2^3}{\mu}}$	Tp2 = 245.077•hr
Mean Motion	n2 := $\frac{2 \cdot \pi}{\text{Tp2}}$	n2 = 0.097928569 <u>rev</u> day
Specific orbital energy	$E2 := \frac{-\mu}{2 \cdot a2}$	$E2 = -1.002 \cdot 10^6 \circ \frac{J}{kg}$
Velocity at Apogee	va2:= Velo(E2, ra2)	$va2 = 187.753 \mathrm{m \cdot s^{-1}}$
Velocity at Perigee	vp2:= Velo(E2, rp2)	$vp2 = 10677.976m \cdot s^{-1}$

Danish Small Satellite Programme

How Does a Rocket Work ???

No, it does not push against the surrounding atmosphere !!!

The Chinese were the first to use solid fuel rockets in the siege of Peiping in 1232.

Newton provided in 1687 the theoretical foundation for understanding how a rocket works.

The bombardment of Copenhagen by the British navy in 1805 was the first large scale military application of rockets in Europe

- Isaac Newton (1642 1727)
 - Philosophiae Naturalis Principia Mathematica 1687
 - 1st Law: The law of Inertia
 - 2nd Law: Force = mass x acceleration
 - 3rd Law: Action og reaction

Danish Small Satellite Programme

Data for Some Typical Rocket Fuels

Earth Gravity Acceleration: ge = 9.80665 m/s²

DSRI

Danish Small Satellite Programme

Ariane 5 – Europe's New Launcher

Danish Small Satellite Programme

Ariane 5 – Some Interesting Numbers

Numbers from our Surroundings

- Kitchen tap fully opened:
 ≈0.25 liters/sec.
- Filling of fuel oil tank: ≈2.5 liter/sek.
- Ordinary oil/gas furnace: ≈18 kW
- Mols-line high-speed ferries: 30000 HK gas turbine (25 MW)
- Avedøre power station: 250 MWe
- Asnæs power station : 610 MWe Typical nuclear power station: 1 GWe, 3 GWt
- Jet engine (Rolls-Royce Trent 800, (2 used in Boeing 777): Up til 47 t thrust per motor

Ariane 5

- Acceleration: At take-off: ≈0.6 g, max. ≈3 g
- Power:

EPC: ≈4000 MW

EAP: ≈21000 MW pr stk

Totalt: ≈46000 MW = 46 GW

EPS – Upper Stage

- 9.7 t fuel total
- Burn time: ≈1100 sec. (≈18 min.)
- Fuel consumption: 8.8 kg/sec.
- Thrust: 2.8 t

EPC – Main Stage

- 27 t liquid hydrogen (-253 °C, 0.071 kg/liter, 390 m³)
- 130 t liquid oxygen (-183 °C, 1.14 kg/liter, 115 m³)
- Burn time: ≈590 sek. (9 min. 50 sec.)
- Fuel consumption : Liquid hydrogen: 44 kg/s (625 liters/sec.) Liquid oxygen: 228 kg/s (200 liters/sec.)
- Power to H₂ turbo pump: 15800 HK (11.9 MW)
- Power to O₂ turbo pump: 5000 HK (3.74 MW)
- Thrust: 115 t (1130 kN)

EAP – Two Solid Fuel Boosters

- 238 t solid fuel per booster
- Burn time: 130 sec. (2 min. 10 sec.)
- Fuel consumption: 1800 kg/sek. per booster
- Thrust: 610 t per booster (6000 kN)

Danish Small Satellite Programme

Fuel, Environmental Effects, Ariane 5 and the Ozone Layer

EPS – Upper Stage

- Hypergolic (self igniting) fuel/oxidizer combnination: Monomethyl Hydrazine (CH₃NHNH₂), clear liquid, highly toxic Nitrogen Tetroxide (N₂O₄), reddish liquid, highly toxic
- Can be ignited and shut down as needed
- Combustion gases: CO₂, H₂O, nitrous compounds
- Environmeltal effects: None in the biosphere, as this stage burns outside the atnosphere.

EPC - Hovedtrin

- Fuel: Liquid Hydrogen, Oxidizer: Liquid Oxygen
- Combustion gases: Water (H₂O)
- Environmeltal effects: None

EAP - 2 stk faststofraketter

- Fuel: Aluminium powder (68 %) + Ammonium Perchlorate (NH₄ClO₄) (18 %) + Hydroxyl-terminated polybutadiene (synthetic rubber) (14 %)
- The components are mixed in a liquid phase, molded into the rocket segments, solidifies to rubber eraser like consistency
- Combustion gases: Aluminium Oxide (Al₂O₃), Hydro-Chloric gas (HCl), CO₂, nitrous compounds etc.
- Environmeltal effects: Hydro-chloric gas is highly toxic, gives rise to acid rain.
- Impact on Ozone layer: When the rocket traverses the stratosphere, HCI "burns" a temporary ozone hole.
- Total ozone-depleting effect of rocket launches is <0.5% all ozone-depleting gases released.
- Why solid rockets when they are not environmentally safe ??? They are simple, cheap and reliable.!!!

Danish Small Satellite Programme

Orbit Calculations, Concluded

Calculation of amount of fuel needed to change apogee for Geostationary Transfer Orbit (GTO) to reach the Moon

- E: Specific energy
- r: Radius
- Isp: Specific impulse for the fuel/oxidizer
- m: Initial mass of the rocket
- ge = 9.80665 m/s²

Propulsion Calculation

Delta-V to raise apogee by perigee burn	$\Delta v := vp2 - vp1 $	$\Delta v = 673.532 \mathrm{m} \mathrm{s}^{-1}$	
Initial spacecraft mass	m0 := 100 kg		
Solid Propellant			
Specific impulse of propellant	lsp4 := 285·s	NB: Realistic Isp value	
Mass of propellant	mp4 := PropMass(m0, Δv , Isp4)		
	mp4 = 21.403 kg		
Total engine mass	me4 := $\frac{mp4}{0.88}$	me4 = 24.322 kg	
	``````````````````````````````````````		

(Based on Thiokol Star 13B, 47 kg total mass)

#### Formulas

Velocity vs. radius length in orbit

Propellant mass for given delta-V

Velo(E,r) =  $\sqrt{2 \cdot \left(E + \frac{\mu}{r}\right)}$ PropMass(m,  $\Delta V$ , lsp) = m  $\cdot \left(1 - e^{\frac{-\Delta V}{\text{lsp-ge}}}\right)$ 

• DSRI

Orbital_Mechanics.ppt

**Danish Small Satellite Programme** 

Assume that the Cubesat is in a 600 km circular orbit around the Earth

Calculate the amount of fuel needed to change the orbit to be elliptic with a perigee of 150 km to ensure fast reentry such that the Cubesat does not contribute to space debris.

Catalythic Decomposition of Nitrous Oxide (N₂O) (Laughing Gas) lsp = 150 sec**Earth Gravity Acceleration:**  $ae = 9.80665 \text{ m/s}^2$ **Geocentric Gravitational Constant:** Earth Radius at Equator

Velocity at apogee or perigee:

**Propellant Mass:** 

![](_page_26_Picture_10.jpeg)

u =3.986004418.10¹⁴ m³/s² R₂₀ = 6378.137 km (WGS-84 ellipsoid)