Danish Space Research Institute
Danish Small Satellite Programme

DTU Satellite Systems and Design Course Orbital Mechanics

Flemming Hansen
MScEE, PhD
Technology Manager
Danish Small Satellite Programme
Danish Space Research Institute
Phone: 35325721
E-mail: fh@dsri.dk

Danish Space Research Institute

Danish Small Satellite Programme

Planetary and Satellite Orbits

- Johannes Kepler (1571-1630)
- Discovered by the precision mesurements of Tycho Brahe that the Moon and the planets moves around in elliptical orbits
- Harmonia Mundi 1609, Kepler's $1^{\text {st }}$ og $2^{\text {nd }}$ law of planetary motion:
- $1^{\text {st }}$ Law: The orbit of a planet ia an ellipse with the sun in one focal point.
- 2nd Law: A line connecting the sun and a planet sweeps equal areas in equal time intervals.
- 1619 came Keplers $3^{\text {rd }}$ law:
- 3rd Law: The square of the planet's orbit period is proportional to the mean distance to the sun to the third power.

Danish Space Research Institute

Danish Small Satellite Programme

Newton's Laws

- Isaac Newton (1642-1727)
- Philosophiae Naturalis Principia Mathematica 1687
- $1^{\text {st }}$ Law: The law of inertia
- $2^{\text {nd }}$ Law: Force $=$ mass x acceleration
- $3^{\text {rd }}$ Law: Action og reaction
- The law of gravity:

$$
F=\frac{G M m}{r^{2}}
$$

F Gravitational force between two bodies
G The universal gravitational constant: $\mathbf{G}=6.670 \cdot 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
M Mass af one body, e.g. the Earth or the Sun
m Mass af the other body, e.g. the satellite
r Separation between the bodies

G is difficult to determine precisely enough for precision orbit calculations.
$\mathrm{GM}_{\text {Earth }}$ can be determined to great precision: $\mathrm{GM}_{\text {Earth }}=\mu=\mathbf{3 . 9 8 6 0 0 4 4 1 8 \cdot 1 0 ^ { 1 4 } \mathrm { m } ^ { 3 } / \mathrm { s } ^ { 2 }}$

Danish Space Research Institute

Danish Small Satellite Programme

Coordinate Systems

Heliocentric Inertial System

50.2786" westerly drift of the Vernal Equinox per year

Danish Space Research Institute

Danish Small Satellite Programme

Kepler Elements, Orbital Elements (Earth Orbits)

Five orbital elements are neded to determine the orbit geometry:
a Semi-Major Axis
Determines the size of the orbit and the period of revolution
e Eccentricity - Determines how elongated the ellipse is
i Inclination
Angle between the equator and orbital planes
$0^{\circ} \leq i \leq 90^{\circ}$: The satellite has an easterly velocity component prograde orbit
$90^{\circ} \leq \mathrm{i} \leq 180^{\circ}$: The satellite has a westerly velocity component retrograde orbit
$\Omega \quad$ Right Ascension of Ascending Node - RAAN
Angle from Vernal Equinox to the point where the orbit intersects the equatorial plane passing from South to North (the Ascending Node).
ω Argument of Periapsis / Perigee
Angle Between the line of nodes (the line between the ascending and descending nodes) and periapsis / perigee

Danish Space Research Institute

Danish Small Satellite Programme

Two more elements are needed to calculate the position of the satellite at any time:
$\mathrm{T}_{0} \quad$ Epoch Time - Reference time for orbital elements and start of orbit propagation
$v_{0} \quad$ True anomaly at Epoch - Angle from periapsis / perigee to the satellite position at \mathbf{T}_{0}

Normally the parameter "Mean Motion" is used instead of the semi-major axis in orbital calculations:

Mean Motion: $\mathrm{n}:=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mu}{\mathrm{a}^{3}}} \quad$ Orbit period: $\operatorname{Tp}:=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{a}^{3}}{\mu}}$

Normally the parameter Mean Anomaly instead true anomaly in an orbital parameter set:
$M-M_{0}=n\left(t-T_{0}\right)=E-e \sin E$ where E is the Eccentric Anomaly

Danish Space Research Institute
Danish Small Satellite Programme

Kepler's problem

Given: $\underline{\mathbf{r}}_{0}, \underline{\mathbf{v}}_{0}$ at time T_{0}

Find: $\underline{\underline{r}}, \underline{\mathbf{v}}$ at time t

Danish Space Research Institute

Danish Small Satellite Programme

Perturbations

The fact that the Earth is not a sphere but an ellipsoid causes the orbit of a satellite to be perturbed

Geopotential function:
$\Phi(r, L)=(\mu / r) \cdot\left[1-\sum J_{n}\left(R_{E} / r\right)^{n} P_{n}(\sin L)\right]$
where:
L is latitude
R_{E} is the Earth radius at Equator
P_{n} is the Legendre polynomials
J_{n} are dimensionless coefficients:

$$
\begin{aligned}
& J_{2}=0.00108263 \\
& J_{3}=-0.00000254 \\
& J_{4}=-0.00000161
\end{aligned}
$$

Orbit	$\begin{gathered} \text { Effect of } \mathrm{J}_{2} \\ \text { (Eqs. 6-19, 6-20) } \\ \text { (deg/day) } \end{gathered}$	Effect of Moon (Eqs. 6-14, 6-16) (deg/day)	$\begin{aligned} & \text { Effect of Sun } \\ & \text { (Eqs. 6-15, 6-17) } \\ & \text { (deg/day) } \end{aligned}$
Shuttle	$a=6700 \mathrm{~km}, e=0.0, i=28 \mathrm{deg}$		
$\Delta \Omega$	-7.35	-0.000 19	-0.000 08
$\Delta \omega$	12.05	0.00242	0.00110
GPS	$a=26,600 \mathrm{~km}, \quad e=0.0, \quad i=60.0 \mathrm{deg}$		
$\Delta \Omega$	-0.033	-0.000 85	-0.000 38
$\Delta \omega$	0.008	0.00021	0.00010
Molniya	$a=26,600 \mathrm{~km}, \quad e=0.75, i=63.4 \mathrm{deg}$		
$\Delta \Omega$	-0.30	-0.000 76	-0.000 34
$\Delta \omega$	0.00	0.00000	0.00000
Geosynchronous	$a=42,160 \mathrm{~km}, e=0, i=0 \mathrm{deg}$		
$\Delta \Omega$	-0.013	-0.003 38	-0.00154
$\Delta \omega$	0.025	0.00676	0.00307

$\Delta \Omega$ is the drift of the ascending node $\Delta \omega$ is the drift of periapsis / perigee

Danish Space Research Institute

Danish Small Satellite Programme

Drift of Ascending Node

NodalDriftRate $(a, i, e):=-2.06474 \cdot 10^{14} \cdot\left(\frac{a}{1 \cdot k m}\right)^{\frac{-7}{2}} \cdot \cos (i) \cdot\left(1-e^{2}\right)^{-2} \cdot \frac{\operatorname{deg}}{\text { day }}$
The Sun moves easterly by 0.9856° per day. An orbit exhibiting the same drift of the ascending node is said to be sun-synchronous (Helio-synchronous). This requires $\mathrm{i}>90^{\circ}$ i.e. a retrograde orbit. The satellite crosses the Equator at the same local solar time every orbit.

Danish Space Research Institute

Danish Small Satellite Programme

Drift of Periapsis / Perigee

Note that the drift is zero at $\mathrm{i}=63.435^{\circ}$. This type of orbit with $\mathrm{e} \approx 0.75$, ≈ 12 hour period and apogee on the Northern hemisphese is denoted Molniya orbit and is used by Russian communication satellites
$\operatorname{ArgPerigeeDriftRate}(a, i, e):=1.03237 \cdot 10^{14} \cdot\left(\frac{a}{1 \cdot k m}\right)^{\frac{-7}{2}} \cdot\left(4-5 \cdot \sin (i)^{2}\right) \cdot\left(1-e^{2}\right)^{-2} \cdot \frac{\mathrm{deg}}{\text { day }}$

Danish Space Research Institute

Danish Small Satellite Programme

Molniya Orbit

Drift of periapsis $/$ perigee is zero at $\mathrm{i}=63.435^{\circ}$.
This type of orbit with $e \approx 0.75, \approx 12$ hour period and apogee on the Northern hemisphese is denoted MoIniya orbit and is used by Russian communication satellites

The advantage is that the apogee stays at the Northern hemisphere and is high in the sky for around 8 hours

A geostationary satellite far North (or South) is near the horizon and is easily blocked by mountains or buildings.

Danish Space Research Institute

Danish Small Satellite Programme

Other Orbits

Geostationary Orbit (GEO or GSO).
Circular orbit with inclination $=0$ ㅇ, semi-major axis $=42164.172 \mathrm{~km}, \mathrm{~h}=35768 \mathrm{~km}$ Period $=23$ h 56 m 4.0954 s

Geostationary Transfer Orbit (GTO)
Elliptical Orbit with inclination $\approx \mathbf{7}^{\circ}$ (from Kourou), $\approx 28.5^{\circ}$ (from Cape Canaveral)
Perigee ≈ 500 - 600 km , Apogee $=35768 \mathrm{~km}$)
Low Earth Orbit (LEO)
Orbits in the altitude range 250 - 1500 km
Medium Earth Orbit (MEO)
Orbits in the altitude range 10000 - 25000 km

Danish Space Research Institute

Danish Small Satellite Programme

Software for Orbit Calculations

NOVA for Windows 32

Shareware at USD 59.95

Download from
http://www.nlsa.com

Free demo which may be registered for legal use.

Danish Space Research Institute

Danish Small Satellite Programme

NOVA for Windows

Orbital Elements

Satellite Editor					
Keplerian elements	290 available satellites．Last update on：27－06－95				
	Priroda Prognoz－M2	SNOE		Teledesic 1	
		Soyuz TM－27		TOMS－EP	
	Prognoz－M2 Progress M－39	Spektr		TOPEX	
	RADARSAT			TRACE	
	RADCALRESURS 1－3	SPOT2		TUESAT－A	
Element set $\quad 234$		RESURS 1－3 SP	SPOT 3	tuesat－b	
Inclination 96.48290000	ROSAT SF		SPOT 4	UARS	
	$\begin{array}{ll}\text { RS－10／11 } & \text { Sta } \\ \text { RS－1213 }\end{array}$		Starlette	UFOF2	
RAAsc．Node 58.80410000			STELLA	U0－11	
Eccentricity 0.01543630	$\begin{array}{ll}\text { RS－15 } & \text { ST } \\ \text { S80\％T } & \text { ST }\end{array}$		STEP－M4	U0－14	
			STRV－1A	U0－22	
Arg．of perigee 48.80510000	S80T ${ }_{\text {SAC－BIHETE }}$			UPM SAT 1	
Mean anomaly	SAC－BIHETESAMPEX		TDRS 1	WO－18	
Mean anoma	SARA TD		TDRS 3	XTE	
Mean motion	$\begin{array}{ll}\text { SAX } \\ \text { Seasat } 1 & \text { TD } \\ \text { Sor }\end{array}$		TDRS 4	YES	
Decay rate 0.00000000			TDRS 5	ZEYA	
	SeaSat 1 SeaStar		$\begin{aligned} & \text { TDS } 6 \\ & \text { TDRS } 7 \end{aligned}$	ZHONGV	
	SICH－1 T			ØRSTED	
	d			\square	\downarrow
	路 Update	酸 clean	\checkmark New	（3）Iimed	䲕 Delete
Groups Keplerian elements	\checkmark OK	X Cancel	？Help	Who＇s Up？	Config．exatra

Danish Space Research Institute

Danish Small Satellite Programme

Orbital Elements in NASA TLE (Two-Line Elements) format

```
    ØRSTED = Name of spacecraft (Max. 11 characters)
Col. No. ....:....1....:....2....:....3....:....4....:....5....:....6....:....7
    1234567890123456789012345678901234567890123456789012345678901234567890
Legend L AAAAAU YYNNNPPP XXDDD.FFFFFFFF CCCCCCCC UUUUUUU VVVVVVV E SSSSZ
TLE 1 1 25635U 99008B 99132.50239417 +.00000000 +00000+0 +00000+0 1 12344
Col. No. ....:....1....:....2....:....3....:....4....:....5....:....6.....:....7
    1234567890123456789012345678901234567890123456789012345678901234567890
Legend L AAAAA III.IIII RRR.RRRR EEEEEEE PPP.PPPP NNN.NNNN MM.MMMMMMMMKKKKKZ
TLE 2 2 25635 96.4836 68.6614 0153506 8.1032 183.1749 14.40955463 11246
```

TLE Data Line 1
L: Line Number
A: Catalog Number
U: Unclassified (C: Classified)
Y: Last Two Digits of Daunch Year
N: Launch Number of the Year
P: Piece of Launch
X: Last two digits of Epoch Year
D: Day number in Epoch Year
F: Fraction of day in Epoch Time
C: Decay Rate (First Time Derivative of the Mean Motion divided by 2)
$\mathrm{U}:$ Second Time Derivative of Mean Motion divided by 6. (Blank if N/A)
V : BSTAR drag term if GP4 general perturbation theory was used. Otherwise, radiation pressure coefficient.

E: Ephemeris Type (=1 normally)
S: Element Set Number
Z: Checksum

TLE Data Line 2
L: Line Number
A: Catalog Number
I: Inclination
R: Right Ascension of Ascending Node
E: Eccentricity, assuming implicitly
a decimal point at left
P: Argument of Perigee
N: Mean Anomaly
M: Mean Motion
K: Orbit Number
Z: Checksum

Danish Space Research Institute

Danish Small Satellite Programme

Use of Orbit Calculations for Mission Planning

Eksempel: Rømer mission in Molniya orbit

Separation satellite - ground station versus time

Danish Space Research Institute

Danish Small Satellite Programme

Downlink bit-rate versus time

Satellitten in eclipse (in Earth's shadow). Max. approx. 1 hour at winter solstice

Danish Space Research Institute

Danish Small Satellite Programme

Use of Orbit Calculations for Mission Planning

Calculation of delta-V needed to change apogee for Geostationary Transfer Orbit (GTO) to reach the Moon

Initial Orbit Parameters (GTO)
Apogee Height \& Radius
Perigee Height \& Radius
Inclination
Semi-Major Axis
Eccentricity
Orbit Period
Mean Motion
Specific orbital energy
Velocity at Apogee
Velocity at Perigee

$$
\begin{array}{ll}
\text { ha1 }:=36786 \mathrm{~km} & \mathrm{ra1}:=\mathrm{ha} 1+\text { Rem } \\
\mathrm{hp} 1:=500 \cdot \mathrm{~km} & \mathrm{rp1}:=\mathrm{hp} 1+\text { Rem } \\
\mathrm{i} 1:=7 \cdot \mathrm{deg} & \mathrm{a} 1=25014.001 \mathrm{~km} \\
\mathrm{a} 1:=\frac{\mathrm{ra} 1+\mathrm{rp1}}{2} & \mathrm{e} 1=0.725314 \\
\mathrm{e} 1:=\frac{\mathrm{ra} 1}{\mathrm{a} 1}-1 & \mathrm{Tp} 1=10.937 \circ \mathrm{hr} \\
\text { Tp1 }:=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{a} 11^{3}}{\mu}} & \mathrm{n} 1=2.194461949 \frac{\mathrm{rev}}{\mathrm{day}} \\
\mathrm{n} 1:=\frac{2 \cdot \pi}{\mathrm{Tp1}} & \mathrm{E} 1=-7.968 \cdot 10^{6} \circ \frac{\mathrm{~J}}{\mathrm{~kg}} \\
\mathrm{E} 1:=\frac{-\mu}{2 \cdot a 1} & \mathrm{va1}=1592.802 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\text { va1 }:=\text { Velo(E1, ra1) } & \text { vp1 }=10004.444 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{array}
$$

Danish Space Research Institute

Danish Small Satellite Programme

Orbit Calculations,

Continued

Final Orbit Parameters (Raised Apogee)

Apogee Height \& Radius	ha2 := 384400 km	ra2 := ha2 + Rem
Perigee Height \& Radius	hp2 := hp1	rp2 := hp2 + Rem
Inclination	i2 := i1	
Semi-Major Axis	$\mathrm{a} 2:=\frac{\mathrm{ra} 2+\mathrm{rp2}}{2}$	$\mathrm{a} 2=198821.001 \mathrm{~km}$
Eccentricity	$\mathrm{e} 2:=\frac{\mathrm{ra} 2}{\mathrm{a} 2}-1$	$\mathrm{e} 2=0.965441$
Orbit Period	$\text { Tp2 }:=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{a} 2^{3}}{\mu}}$	Tp2 = 245.077 ${ }^{\text {hr }}$
Mean Motion	$\mathrm{n} 2:=\frac{2 \cdot \pi}{\mathrm{Tp} 2}$	$\mathrm{n} 2=0.097928569 \frac{\mathrm{rev}}{\mathrm{day}}$
Specific orbital energy	$\text { E2 }:=\frac{-\mu}{2 \cdot a 2}$	$\mathrm{E} 2=-1.002 \cdot 10^{6} \circ \frac{\mathrm{~J}}{\mathrm{~kg}}$
Velocity at Apogee	va2 := Velo(E2, ra2)	$\mathrm{va} 2=187.753 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Velocity at Perigee	vp2 : = Velo(E2, rp2)	$\mathrm{vp} 2=10677.976 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Danish Space Research Institute

Danish Small Satellite Programme

How Does a Rocket Work ???

No, it does not push against the surrounding atmosphere !!!

The Chinese were the first to use solid fuel rockets in the siege of Peiping in 1232.
Newton provided in 1687 the theoretical foundation for understanding how a rocket works.

The bombardment of Copenhagen by the British navy in 1805 was the first large scale military application of rockets in Europe

- Isaac Newton (1642-1727)

- Philosophiae Naturalis Principia Mathematica 1687
- $1^{\text {st }}$ Law: The law of Inertia
- $2^{\text {nd }}$ Law: Force $=$ mass x acceleration
- $3^{\text {rd }}$ Law: Action og reaction

Danish Space Research Institute

Danish Small Satellite Programme

Rocket Equation

Impulse: $\mathbf{p}=\mathbf{m} \cdot \mathbf{v}$

Conservation of Impulse:
$\Delta M \cdot v_{e}=\mathbf{M} \cdot \Delta \mathbf{v}$
Earth gravitational
acceleration

Thrust: $F=q \cdot V_{e}+\left(P_{e}-P_{a}\right) \cdot A_{e}=q \cdot g_{0} \cdot I_{s p}+\left(P_{e}-P_{a}\right) \cdot A_{e}$

Ambient pressure
Exit pressure of combustion gases

Relative velocity of combustion gases (typically 2500-3000 m/sec.)
Expelled mass, kg/sec.

Time t

(a)
)
Orbital_Mechanics.ppt
Orbial_Mechanics.ppt (b)

Danish Space Research Institute

Danish Small Satellite Programme

Data for Some Typical Rocket Fuels

Liquid Oxygen / Liquid Hydrogen:
Liquid Oxygen / Kerosene (RP-1):
Solid fuel - Aluminium powder +
Ammonium Perchlorate $\left(\mathrm{NH}_{4} \mathrm{ClO}_{4}\right)$ + synthetic rubber:
Bi-Propellant Monomethyl Hydrazine $\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)+$ Nitrogen Tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$
Catalythic Decomposition of Hydrogen Peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$
Catalythic Decomposition of Nitrous Oxide ($\mathrm{N}_{2} \mathrm{O}$) (Laughing Gas)
Cold Gas ($\mathbf{N}_{2}, \mathrm{NH}_{3}, \mathrm{He}$, Freon)

Earth Gravity Acceleration:

Isp = 455 sec. (Space Shuttle Main Engine)

$$
\text { Isp = } 350 \text { sec. }
$$

$$
\text { Isp }=280-300 \text { sec. }
$$

$$
\text { Isp }=300-340 \text { sec. }
$$

$$
\text { Isp = } 150 \mathrm{sec} .
$$

$$
\text { Isp = } 150 \mathrm{sec}
$$

$$
\text { Isp }=50-75 \mathrm{sec} .
$$

$$
\mathrm{ge}=9.80665 \mathrm{~m} / \mathrm{s}^{2}
$$

Danish Space Research Institute
Danish Small Satellite Programme

Ariane 5 - Europe's New Launcher

Danish Space Research Institute

Danish Small Satellite Programme

Ariane 5 - Some Interesting Numbers

- Numbers from our Surroundings
- Kitchen tap fully opened:
≈ 0.25 liters/sec.
- Filling of fuel oil tank: $\approx \mathbf{2 . 5}$ liter/sek.
- Ordinary oil/gas furnace: $\approx 18 \mathrm{~kW}$
- Mols-line high-speed ferries: 30000 HK gas turbine (25 MW)
- Avedøre power station: $\mathbf{2 5 0}$ MWe
- Asnæs power station : 610 MWe Typical nuclear power station: 1 GWe, 3 GWt
- Jet engine (Rolls-Royce Trent 800, (2 used in Boeing 777):
Up til 47 t thrust per motor

Ariane 5

- Acceleration:

At take-off: $\approx 0.6 \mathrm{~g}$, max. $\approx 3 \mathrm{~g}$

- Power:

EPC: $\approx 4000 \mathrm{MW}$
EAP: $\approx \mathbf{2 1 0 0 0}$ MW pr stk
Totalt: ≈ 46000 MW = 46 GW

EPS - Upper Stage

- 9.7 t fuel total
- Burn time: $\approx 1100 \mathrm{sec}$. ($\approx 18 \mathrm{~min}$.)
- Fuel consumption: $8.8 \mathrm{~kg} / \mathrm{sec}$.
- Thrust: 2.8 t
- EPC - Main Stage
- 27 t liquid hydrogen $\left(-253^{\circ} \mathrm{C}, 0.071 \mathrm{~kg} / \mathrm{liter}, 390 \mathrm{~m}^{3}\right)$
- 130 t liquid oxygen $\left(-183^{\circ} \mathrm{C}, 1.14 \mathrm{~kg} / \mathrm{liter}, 115 \mathrm{~m}^{3}\right)$
- Burn time: ≈ 590 sek. (9 min .50 sec.)
- Fuel consumption :

Liquid hydrogen: $44 \mathrm{~kg} / \mathrm{s}$ (625 liters/sec.)
Liquid oxygen: 228 kg/s (200 liters/sec.)

- Power to H_{2} turbo pump: 15800 HK (11.9 MW)
- Power to O_{2} turbo pump: 5000 HK (3.74 MW)
- Thrust: 115 t (1130 kN)
- EAP - Two Solid Fuel Boosters
- 238 t solid fuel per booster
- Burn time: 130 sec . $(2 \mathrm{~min} .10 \mathrm{sec}$.)
- Fuel consumption: 1800 kg/sek. per booster
- Thrust: 610 t per booster (6000 kN)

Danish Space Research Institute

Danish Small Satellite Programme

Fuel, Environmental Effects, Ariane 5 and the Ozone Layer

- EPS - Upper Stage
- Hypergolic (self igniting) fuel/oxidizer combnination:

Monomethyl Hydrazine $\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)$, clear liquid, highly toxic
Nitrogen Tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$, reddish liquid, highly toxic

- Can be ignited and shut down as needed
- Combustion gases: $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, nitrous compounds
- Environmeltal effects: None in the biosphere, as this stage burns outside the atnosphere.
- EPC-Hovedtrin
- Fuel: Liquid Hydrogen, Oxidizer: Liquid Oxygen
- Combustion gases: Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
- Environmeltal effects: None
- EAP - 2 stk faststofraketter
- Fuel: Aluminium powder (68 \%) + Ammonium Perchlorate $\left(\mathrm{NH}_{4} \mathrm{ClO}_{4}\right)(18 \%)+$ Hydroxyl-terminated polybutadiene (synthetic rubber) (14\%)
- The components are mixed in a liquid phase, molded into the rocket segments, solidifies to rubber eraser like consistency
- Combustion gases: Aluminium Oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, Hydro-Chloric gas (HCl), CO_{2}, nitrous compounds etc.
- Environmeltal effects: Hydro-chloric gas is highly toxic, gives rise to acid rain.
- Impact on Ozone layer: When the rocket traverses the stratosphere, HCI "burns" a temporary ozone hole.
- Total ozone-depleting effect of rocket launches is $\langle 0.5 \%$ all ozone-depleting gases released.
- Why solid rockets when they are not environmentally safe ??? They are simple, cheap and reliable.!!!

Danish Space Research Institute

Danish Small Satellite Programme

Orbit Calculations,

Concluded

Calculation of amount of fuel needed to change apogee for Geostationary Transfer Orbit (GTO) to reach the Moon

E: Specific energy
r: Radius
Isp: Specific impulse for the
fuel/oxidizer
m: Initial mass of the rocket ge $=9.80665 \mathrm{~m} / \mathrm{s}^{2}$

Propulsion Calculation

Delta- V to raise apogee by perigee burn
$\Delta \mathrm{v}:=|\mathrm{vp} 2-\mathrm{vp} 1|$
$\Delta v=673.532 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Initial spacecraft mass
$\mathrm{m} 0:=100 \cdot \mathrm{~kg}$

Solid Propellant

Specific impulse of propellant	$\operatorname{Isp} 4:=285 \cdot \mathrm{~s}$	NB: Realistic Isp value
Mass of propellant	mp 4	$:=\operatorname{PropMass}(\mathrm{m0}, \Delta \mathrm{v}, \mathrm{Isp} 4)$
	mp 4	$=21.403 \mathrm{~kg}$
Total engine mass	me 4	$:=\frac{\mathrm{mp} 4}{0.88}$

(Based on Thiokol Star 13B, 47 kg total mass)

Formulas

Velocity vs. radius length in orbit
$\operatorname{Velo}(E, r) \equiv \sqrt{2 \cdot\left(E+\frac{\mu}{r}\right)}$

Propellant mass for given delta-V
$\operatorname{PropMass}(m, \Delta V, I s p) \equiv m \cdot\left(1-e^{\frac{-\Delta V}{\operatorname{lsp} \cdot g \mathrm{ge}}}\right)$

Danish Space Research Institute

Danish Small Satellite Programme

Problem

Assume that the Cubesat is in a $\mathbf{6 0 0} \mathbf{~ k m}$ circular orbit around the Earth
Calculate the amount of fuel needed to change the orbit to be elliptic with a perigee of 150 km to ensure fast reentry such that the Cubesat does not contribute to space debris.

Catalythic Decomposition of Nitrous Oxide ($\mathrm{N}_{2} \mathrm{O}$) (Laughing Gas) Isp = 150 sec
Earth Gravity Acceleration:
ge $=9.80665 \mathrm{~m} / \mathrm{s}^{2}$
Geocentric Gravitational Constant:
$\mu=3.986004418 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}$
Earth Radius at Equator
$R_{\text {ee }}=6378.137 \mathrm{~km}$ (WGS-84 ellipsoid)

Specific Orbital Energy:

$$
E:=\frac{-\mu}{2 \cdot \mathbf{a}}
$$

Velocity at apogee or perigee:

$$
\mathbf{V}:=\sqrt{2 \cdot\left(E+\frac{\mu}{r}\right)}
$$

Propellant Mass:
$\operatorname{PropMass}(m, \Delta V$, Isp $) \equiv m \cdot\left(1-e^{\frac{-\Delta V}{\text { lsp } \cdot g e}}\right)$

